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Abstract

The stress decay rate and characteristic decay length for anisotropic materials and ®ber composites have been
intensively investigated. However, those for piezoelectric materials have not been studied. In this paper, we examine

the Saint-Venant end e�ects of piezoceramic materials by considering the problem of a semi-in®nite piezoceramic
strip polarized in the thickness direction and with applied voltages on the upper and lower surfaces. It is assumed
that the gradient of electric potential in the axial direction is much smaller than that in the thickness direction.

Thus, the governing equations in terms of the Airy stress function and electric potential function can be uncoupled.
The governing equation in terms of the Airy stress function involves only two non-dimensional parameters after
non-dimensionalization. Finally, the stress decay rates and characteristic decay lengths for a variety of piezoceramic

materials are computed numerically, and their variation with the two non-dimensional parameters is
presented. # 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Saint-Venant end e�ects can be characterized quantitatively by the decay rate or the characteristic
decay length of the physical ®eld. It is well known that the characteristic decay length is about the width
of the member under loading for homogeneous isotropic materials, and it is greater than the width for
anisotropic materials. Thus, Saint-Venant end e�ects cannot be neglected.

Recent developments in the research on Saint-Venant's principle can be found in review articles by
Horgan (1989, 1996). The exact decay rate in an anisotropic elastic strip using analogs of the
Papkovich±Fadle eigenfunctions has been investigated by Choi and Horgan (1977) and the decay rates
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and the characteristic decay lengths for a variety of contemporary engineering and composite materials
were given by Miller and Horgan (1995). Research works of Saint-Venant's principle can be found in
the ®elds of non-linear elasticity, viscous ¯ows, transient heat conduction and elastodynamics (Horgan,
1996).

Signi®cant advances have been made in recent years in the technologies of piezoelectric materials and
their applications, for example, in intelligent structures (Newnham, 1997), various types of metal±
ceramic composite actuators (Newnham et al., 1992; Dogan and Newnham, 1994), and multi-phase
piezoelectric composite transducers (Zhang et al., 1995). Thus, it is desirable to expand the study of
Saint-Venant's principle into piezoelectric materials, and this paper is devoted to the study of the stress
decay rate in piezoceramics.

The boundary value problem in the present study considers a semi-in®nite piezoceramic strip
polarized in the thickness direction, subject to voltages and traction-free boundary conditions on the
upper and lower surfaces and self-equilibrated end loading. It is ®rst assumed that the gradient of
electric potential in the axial direction is much smaller than that in the thickness direction. Thus, the
governing equations in terms of the Airy stress function and electric potential function can be
uncoupled, and the governing equation in terms of the Airy stress function involves only two non-
dimensional parameters. Finally, the stress decay rates and characteristic decay lengths for a variety of
piezoceramic materials are computed numerically, and their variations with the two non-dimensional
parameters are presented.

2. Theory

2.1. Constitutive equations and governing equations of piezoelectricity

In linear piezoelectricity, the equations of linear elasticity are coupled to the charge equation of
electrostatics by means of the piezoelectric constants. The constitutive equations of piezoelectricity can
be stated in the following general form (see Tiersten, 1969):

fSg � �s�fsg � �d �fE g �1�
and

fDg � �d �Tfsg � �E�fE g, �2�
where {s } is the stress tensor in contracted notation, {S } the strain tensor in contracted notation, {E }
the electric ®eld vector, {D } the electric displacement vector, [s ] the elastic compliance matrix, [d ] the
piezoelectric matrix and [E ] the dielectric permittivity matrix. The equation of motion and the charge
equation of electrostatics are, respectively,

sij,i � fj � r �uj �3�
and

Di,i � 0, �4�
where sij are the components of the stress tensor, fj are the components of the body force, uj are the
component of displacement, Di are the components of the electric displacement and r is the density.

Consider a 2-D problem in the x1±x3 plane. If the x3-axis is taken as the polarization direction, the
constitutive equation for a piezoelectric ceramic can be written as follows:
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The equation of equilibrium (with zero body force) and the compatibility equation are, respectively,

@s1
@x1
� @s5
@x3
� 0, �7�

@s5
@x1
� @s3
@x3
� 0

and

@2S1

@x2
3

� @
2S3

@x2
1

� @2S5

@x1@x3
: �8�

2.2. Governing equations in terms of Airy stress function and electric potential

Substituting the constitutive equation Eq. (5) into the compatibility equation Eq. (8), we get

@2

@x2
3

�s11s1 � s13s3 � d31E3� � @2

@x2
1

�s13s1 � s33s3 � d33E3� � @2

@x1@x3
�s55s5 � d15E1�, �9�

which is expressed in terms of the stress and electric ®elds. Substituting the constitutive equation Eq. (6)
into the charge equation Eq. (4) yields

@

@x1
�d15s5 � E11E1� � @

@x3
�d31s1 � d33s3 � E33E3� � 0, �10�

which is also given in terms of the stress and electrical ®elds.
The Airy stress function f(x1,x2) is de®ned such that

s1 � @2f

@x2
3

,

s3 � @2f

@x2
1

and

s5 � ÿ @2f

@x1@x3
: �11�
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The equations of equilibrium Eq. (7) are then identically satis®ed. An electric potential, j, exists if
there is no dissipation of energy and the electric ®eld can be expressed as:

E1 � ÿ @j
@x1

and

E3 � ÿ @j
@x3

: �12�

Finally, substituting the Airy stress function and electric potential into Eqs. (9) and (10), we obtain
the following governing equations:

s11
@4f

@x4
3

� �2s13 � s55� @ 4f

@x2
1@x

2
3

� s33
@4f

@x4
1

� d31
@3j
@x3

3

� �d33 ÿ d15� @3j
@x2

1@x3

�13�

and

E11
@2j
@x2

1

� E33
@ 2j
@x2

3

� d31
@3f

@x3
3

� �d33 ÿ d15� @3f

@x2
1@x3

, �14�

which involve nine independent elastic, piezoelectric and dielectric constants.

2.3. Governing equations for a piezoelectric strip

Consider a semi-in®nite piezoceramic strip that occupies the region x1 r 0 and ÿH R x3 R H, as
shown in Fig. 1. Here, H is the half thickness of the strip. The strip is polarized in the x3-direction.
There is no mechanical loading on the upper and lower surfaces, while a prescribed self-equilibrated
mechanical loading is applied on the end surface x1=0. Constant voltages are also applied on the upper
and lower surfaces of the piezoceramic strip.

For the purpose of the present study, it is reasonable to assume that the x3 component of the electric
®eld, E3, is much greater than the x1 component, E1, i.e. |j,3|>>|j,1|. If it is further assumed that |j,33|
is much greater than |j,11|, we can neglect the last term of Eq. (13) and the ®rst term of Eq. (14). Then,
Eqs. (13) and (14) yield

s11
@4f

@x4
3

� �2s13 � s55� @
4f

@x2
1@

2
3

� s33
@4f

@x4
1

� d31
@3j
@x3

3

�15�

and

Fig. 1. A semi-in®nite piezoceramic strip with electric and stress boundary conditions.
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: �16�

Taking the partial derivative of Eq. (16) with respect to x3 and then substituting it into Eq. (15), the
governing equation in terms of the stress function only is obtained:

s33
@4f

@x4
1

�
�
�2s13 � s55� ÿ d31

E33
�d33 ÿ d15�

�
@4f

@x2
1@x

2
3

�
�
s11 ÿ d 2

31

E33

�
@4f

@x4
3

� 0: �17�

It should be noted that the above assumptions regarding the electric ®elds, E1 and E3, and the
resulting governing equation Eq. (17) have been adopted by the authors in a recent study of the electro-
mechanical responses of piezoceramic materials (Ruan et al., 1999).

2.4. Non-dimensionalization

The governing partial di�erential equations (Eqs. (16) and (17)) are ®rst non-dimensionalized. The
dimensionless co-ordinates, x and Z, are de®ned as:

x �
�
s11
s33

�1=4x1

H

and

Z � x3

H
: �18�

Also, by de®ning the following non-dimensional parameters

b1 �
�

1

s11s33

�1=2

�2s13 � s55�,

b2 �
d 2

31

E33s11
,

b3 �
�

1

s11s33

�1=2
d31
E33
�d33 ÿ d15�,

k1 � b1 ÿ b3,

k2 � 1ÿ b2 �19�
and the dimensional constant

k � d31
s11

,

the governing partial di�erential equations (Eqs. (16) and (17)) become, respectively,
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The governing equations in the above form involve three non-dimensional parameters and one
dimensional constant instead of the nine material constants. It should be noted that Eq. (20) pertains to
the Airy stress function only and it does not involve the electric potential function.

3. Eigenconditions

Considering the self-equilibrium condition at each x1 (or x ) section of the strip, the following
relations in terms of the Airy stress function are adopted for the traction-free boundary conditions.

f �x,Z� � 0

and

@ f �x,Z�
@Z

� 0 at Z �21: �22�

These are justi®ed, since Eq. (22) implies

@2f �x,Z�
@x2

� 0

and

@2f �x,Z�
@x@Z

� 0 at Z �21: �23�

Following the approach described by Miller and Horgan (1995), we seek solutions of Eq. (20) of the
form:

f �x,Z� � eÿgxF�Z�, �24�
where g is a complex constant. The form of f(x,Z ) ensures that the stresses decay exponentially in the x1-
direction. Substituting Eq. (24) into Eq. (20) yields the following fourth-order ordinary di�erential
equation:

k2F
0000�Z� � k1g2F 00�Z� � g4F�Z� � 0 �25�

and boundary conditions:

F�Z� � 0

and

F 0�Z� � 0 at Z �21: �26�
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Eqs. (25) and (26) constitute an eigenvalue problem with eigenparameter g.
A solution of Eq. (25) is sought in the form

F�Z� � AelZ, l � constant: �27�
Substituting the above expression into Eq. (25), the following characteristic equation is obtained:

k2l
4 � k1g2l

2 � g4 � 0: �28�
The roots of Eq. (28) are

l �2
g�������
2k2
p

�����������������������������������
ÿk12

������������������
k21 ÿ 4k2

qr
: �29�

Considering the case k1 > 0 and k2 > 0, which is valid for all the piezoceramics studied here, the four
roots of l can be denoted as:

l1,2 � � p12iq1�g
and

l3,4 � � p22iq2�g, �30�
where i � �������ÿ1p

, p1 and q1 are the real and imaginary parts of l1, and p2 and q2 are the real and
imaginary parts of l3. We now study the following three cases separately.

Case A. �k21 ÿ 4k2 < 0�:

In this case, it can be shown that the roots l can be represented as:

l1,2 � � p2iq�g
and

l3,4 � �ÿp2iq�g, �31�
where

p � 1

2
�����
k2
p

����������������������
2
�����
k2

p
ÿ k1

q
and

q � 1

2
�����
k2
p

����������������������
2
�����
k2

p
� k1

q
: �32�

Substituting Eq. (31) into Eq. (26), we obtain

F�Z� � egpZ�C1 cos gqZ� C2 sin gqZ� � eÿgpZ�C3 cos gqZ� C4 sin gqZ�, �33�
where C1, C2, C3 and C4 are integration constants. It can be shown that if F(Z ) is an even function,
which corresponds to symmetric deformations, C3=C1 and C4=ÿC2. Thus, Eq. (33) becomes

F�Z� � C1 cosh� pgZ�cos�gqZ� � C2 sinh� pgZ�sin�qgZ�: �34�
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By applying the boundary conditions (26), the eigencondition (characteristic equation) is obtained as
follows:

sinh�2gp�
p

� sin�2gq�
q

� 0: �35�

Similarly, if F(Z ) is an odd function, which corresponds to anti-symmetric deformations, the
eigencondition can be expressed as:

sinh�2gp�
p

ÿ sin�2gq�
q

� 0: �36�

Thus, it is convenient to study the eigencondition by separating the eigenfunctions into even and odd
functions.

Case B. �k21 ÿ 4k2 � 0�:
In this case, we have

l1,2 � pgi

and

l3,4 � ÿpgi, �37�
where

p �
��������
k1
2k2

s
:

The eigenconditions for even and odd eigenfunctions are, respectively,

sin�2gp� � 2gp � 0 �38�
and

sin�2gp� ÿ 2gp � 0: �39�
It can be readily shown that an isotropic elastic material is a limiting case of Case B, for which p=1.

Case C. �k21 ÿ 4k2 > 0�:
In this case, we have

l1,2 �2pgi

and

l3,4 �2qgi, �40�
where

p �

���������������������������������
k1 ÿ

������������������
k21 ÿ 4k2

q
2k2

vuut
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and

q �

���������������������������������
k1 �

������������������
k21 ÿ 4k2

q
2k2

vuut
: �41�

The eigenconditions for even and odd eigenfunctions are, respectively,

p cos�qg�sin� pg� ÿ q cos� pg�sin�qg� � 0 �42�
and

p cos� pg�sin�qg� ÿ q sin� pg�cos�qg� � 0: �43�
It should be noted that the expressions of eigenconditions (Eqs. (35), (36), (38), (39), (42) and (43))

derived above are in the same form as those obtained by Choi and Horgan (1977).

4. Stress decay rate and characteristic decay length

For the three cases discussed in Section 3, the eigenvalues can be determined from the corresponding
eigenconditions. From Eq. (24), we see that the decay rate in the dimensionless coordinates is the
eigenvalue with the smallest positive real part. Once the decay rate is obtained, it should be transformed
back to the variable x1 to obtain the decay rate in the original coordinates. Suppose t� is the smallest
positive real part of the eigenvalue in the dimensionless coordinates; then the stresses decay as eÿt

�x: By
transforming back to the original coordinates, it can be seen that the stresses decay as eÿk

�x 1 in the
original coordinates, where

k� �
�
s11
s33

�1=4 t�

H
: �44�

Following Miller and Horgan (1995), the characteristic decay length l� is de®ned as the length over
which the solution of the Airy stress function, and hence the stress t, decays to 1% of its value at x1=0��t�l�,x3�

�� � Aeÿk
�l� � A

1

100
: �45�

Then we obtain

l� � ln 100

k�
: �46�

Now, we summarize the procedure for determining stress decay rates and characteristic decay lengths
for piezoceramic materials as follows:

1. Determine the non-dimensional parameters, b1, b2 and b3, and hence k1 and k2, using the elastic,
piezoelectric and dielectric constants of piezoceramic materials;

2. Determine the characteristic equations based upon the magnitude of k21 ÿ 4k2;
3. Find the complex roots of characteristic equations using Muller's method, whose FORTRAN

subroutine is available in computer mathematics library (Visual Numerics, 1994);
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4. Determine the smallest positive real parts of the eigenvalues; and
5. Determine the decay rates and characteristic decay length using Eqs. (44) and (46).

5. Results

In order to justify the assumption of |j,3|>>|j,1| made in this paper, a numerical example is
performed to examine its suitability. Consider the piezoelectric strip shown in Fig. 1; the geometric
parameters are l = 10 mm and H = 1 mm. The electric potentials are j=100 V on the upper edge and
j=0 on the lower edge. The mechanical loading on the end surface x1=0 is (units=N/mm2)

Table 1

Elastic, piezoelectric and dielectric constants of some selected piezoceramics

PZT-5H1 PZT-52 PZT-43 Ceramic-B1 VIBRIT 2004 VIBRIT 5254

Elastic compliance (10ÿ12 m2/N)

s11 16.5 16.4 12.4 8.6 11.1 15.7

s12 ÿ4.78 ÿ5.74 ÿ3.98 ÿ2.6 ÿ4.4 ÿ5.9
s13 ÿ8.45 ÿ7.22 ÿ5.52 ÿ2.7
s33 20.7 18.8 16.1 9.1 12.1 19.3

s44 43.5 47.5 39.1 22.2 27.0 46.0

Piezoelectric constant (10ÿ12 C/N)

d31 ÿ274 ÿ172 ÿ135 ÿ58 ÿ80 ÿ190
d33 593 374 300 149 170 420

d15 741 584 525 242 220 625

Relative permittivity (E0=8.85� 10ÿ12 F/m)

E11/E0 1700 1730 1470 1000 900 2000

E33/E0 1470 1700 1300 910 1030 2000

1 Data Sheet (1990).
2 Rogacheva (1994).
3 Park and Sun (1995).
4 Zelenka (1986).

Fig. 2. Distribution of the electric potential in the one-half piezoceramic strip using FEM approach.
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s1 � 2x3 ÿ 1, x3r0

and

s1 � ÿ2x3 ÿ 1, x3 < 0: �47�

PZT-5H, whose material properties are shown in Table 1, is used. The commercially available FEM
code, ABAQUS, is adopted. We use 320 8-nodal serendipity elements for one-half of the piezoceramic
strip. The distribution of the electric potential in one-half of the piezoceramic strip is shown in Fig. 2. It
can be seen that the variation of the electric potential, j, is almost linear along the x3 axis, and there is
a very small variation of j along the x1 axis.

Table 1 lists the data of the elastic, piezoelectric and dielectric constants of some selected piezoceramic
materials. The elastic compliance constant sij and piezoelectric strain constant dij of PZT-4 given in
Table 1 have been transformed, respectively, from the elastic sti�ness cij, and piezoelectric stress
coe�cient eij. Since s13 of VIBRIT 200 and 525 are not available in the original reference, it is assumed
that s13=s12 in order to determine the parameter b1, and hence k1. In Table 2, the values of non-
dimensional parameters, k1 and k2, and the decay rates and lengths corresponding to the six selected
piezoceramics are presented. In Table 3, the variation of non-dimensional characteristic decay lengths
with non-dimensional parameters, k1 and k2, is presented.

The results of Tables 2 and 3 are obtained by using Eqs. (35), (38) and (42), which respond to

Table 2

Decay rate and characteristic decay length for some selected piezoceramics

Non-dimensional

parameter
Decay rate k � Characteristic decay length l � Decay length with zero electric ®eld

k1 k2

PZT-5H 1.27 0.65 1.71/H 1.35� 2H 1.22� 2H

PZT-5 1.74 0.88 1.93/H 1.19� 2H 1.15� 2H

PZT-4 1.80 0.87 1.89/H 1.22� 2H 1.17� 2H

Ceramic-B 1.82 0.95 2.03/H 1.13� 2H 1.12� 2H

VIBRIT 200 1.53 0.94 1.94/H 1.19� 2H 1.17� 2H

VIBRIT 525 1.84 0.87 1.92/H 1.20� 2H 1.16� 2H

Isotropic 2.0 1.0 2.11/H 1.09� 2H

Table 3

Variation of non-dimensional characteristic decay lengths, l �/2H, with non-dimensional parameters, k1 and k2

k1\k2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.2 2.3897 2.0554 1.8765 1.7572 1.6690 1.5997 1.5430 1.4954 1.4544 1.4186

0.4 2.2237 1.9487 1.7948 1.6898 1.6110 1.5485 1.4970 1.4534 1.4157 1.3827

0.6 2.0796 1.8544 1.7214 1.6286 1.5580 1.5014 1.4544 1.4144 1.3797 1.3491

0.8 1.9443 1.7686 1.6544 1.5724 1.5090 1.4577 1.4147 1.3780 1.3459 1.3175

1.0 1.7774 1.6878 1.5920 1.5200 1.4633 1.4168 1.3775 1.3437 1.3140 1.2877

1.2 2.2712 1.6063 1.5324 1.4705 1.4201 1.3781 1.3423 1.3112 1.2838 1.2593

1.4 2.6187 1.5048 1.4730 1.4227 1.3788 1.3413 1.3088 1.2803 1.2550 1.2323

1.6 2.8868 1.7684 1.4077 1.3748 1.3385 1.3057 1.2765 1.2506 1.2274 1.2064

1.8 3.1175 2.0291 1.2987 1.3236 1.2979 1.2706 1.2451 1.2218 1.2007 1.1814

2.0 3.3250 2.2196 1.6458 1.2568 1.2546 1.2350 1.2138 1.1935 1.1745 1.1549
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symmetric end loading. It can be seen that for d31=0 and d33ÿd15=0, the terms on the right-hand side
of Eq. (13) vanish and, consequently, b2=0, b3=0, k1=b1, and k2=1. This corresponds to the case of
an orthotropic elastic medium. The decay rates and decay lengths for isotropic materials as well as these
piezoceramic materials with uniform electric potential are also presented in Table 2. The ranges of k1
and k2 of these piezoceramics are 1.27±1.84 and 0.65±0.95, respectively. The ranges of stress decay rates
and decay lengths are 1.71/H±2.03/H and 1.13� 2H±1.35� 2H, respectively.

The characteristic decay lengths of the piezoceramics discussed in this paper are larger than those of
isotropic materials, and the decay lengths of these piezoceramic materials with electric ®elds are larger
than those of the same materials with zero electric ®eld. The stress decay length, for instance, of PZT-
5H with an applied electric ®eld is about 24% longer than that for isotropic materials and about 11%
longer than that of the same material with zero electric ®eld.

The ranges of k1=0.1±2.0 and k2=0.1±1.0 are chosen for parametric studies. It can be seen from
Table 3 and Fig. 3 that the stress decay lengths decrease with increase of parameter k1 for a given value
of parameter k2. At k1=2.0 and k2=1.0, which corresponds to isotropic materials, the decay length
reaches its minimum, and at k1=2.0 and k2=0.1, the maximum decay length occurs.

6. Conclusions and discussion

1. Since the voltage is added to the upper and lower edges of the strip, the assumption of |j,3|>>|j,1|
implies that the x1-direction electric ®eld |j,1|, induced by the stress ®eld, is much smaller than that
induced by the applied voltage. The numerical results from the FEM approach justify this
assumption.

2. Based upon the assumption that |j,3|>>|j,1|, the governing equations in terms of the Airy stress
function and electric potential function are uncoupled, and only two non-dimensional parameters
appear in the dimensionless equation.

3. It can be seen from Eq. (19) that b1 consists of elastic compliance constants only, and b2 and b3 are
expressed in terms of the elastic, piezoelectric and dielectric constants. Therefore, the parameters b2
and b3 represent the piezoelectric e�ect on the stress ®eld. For instance, if b2=0 and b3=0, and
hence k1=b1 and k2=1, Eq. (20) reduces to that for orthotropic elastic materials. It should be noted

Fig. 3. Graph of non-dimensional characteristic decay length, l �/2H, vs. non-dimensional parameters, k1 and k2.
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that, if the piezoelectric e�ect vanishes, the case conditions �k21 ÿ 4k2, k
2
1 ÿ 4k2 � 0 and k21 ÿ 4k2 > 0�

and all the eigenconditions obtained in this paper can be reduced to those derived by Choi and
Horgan (1977) for orthotropic elastic materials.

4. The results of stress decay lengths for some engineering piezoceramic materials are provided. The
decay lengths of all the piezoceramics discussed here are larger than that of isotropic materials.
Among these materials, PZT-5H has the largest decay length, and it is 24% larger than that of
isotropic materials.

5. The results show that the stress decay lengths for piezoceramic materials with an electric ®eld in the
x3-direction are larger than those with zero electric ®eld, and the decay length of PZT-5H with
electric ®eld is 11% larger than that with zero electric ®eld.

Acknowledgements

This work was supported by the O�ce of Naval Research through the MURI program at Rutgers,
The State University of New Jersey.

References

Choi, I., Horgan, C.O., 1977. Saint-Venant's principle and end e�ects in anisotropic elasticity. Journal of Applied Mechanics 44,

424±430 (Transactions of the ASME).

Data Sheet, 1990. Piezoceramics. Vernitron Piezoelectric Division, Bedford, Ohio.

Dogan, A., Newnham, R.E., 1994. Flextensional Cymbal Transducer. USA Patent application, PSU Invention Disclosure No. 94-

1375.

Horgan, C.O., 1989. Recent developments concerning Saint-Venant's principle: an update. Applied Mechanics Reviews 42 (11),

s101±s111.

Horgan, C.O., 1996. Recent developments concerning Saint-Venant's principle: an update. Applied Mechanics Reviews 49 (10),

295±303.

Miller, K.L., Horgan, C.O., 1995. Saint-Venant end e�ects for plane deformations of elastic composites. Mechanics of Composite

Materials and Structures 2, 203±214.

Newnham, R.E., 1997. Molecular mechanisms in smart materials. MRS Bulletin 22, 20±34.

Newnham, R.E., Xu, Q.C. and Yoshikawa, S., 1992, Transformed Stress Direction±Acoustic Transducer. U.S. Patent 4,999,819.

Park, S.B., Sun, C.T., 1995. E�ect of electric ®eld on fracture of piezoelectric ceramics. International Journal of Fracture 70, 203±

216.

Rogacheva, N.N., 1994. The Theory of Piezoelectric Shells and Plates. CRC Press, Inc, Boca Raton, Florida.

Ruan, X., Danforth, S.C., Safari, A., Chou, T.-W., 1999. A theoretical study of the coupling e�ects in piezoelectric ceramics.

International Journal of Solids and Structures 36, 465±487.

Tiersten, H.F., 1969. Linear Piezoelectric Plate Vibrations. Plenum Press, New York.

Visual Numerics, Inc., 1994. IMSL Math/Libary, Houston, Texas.

Zelenka, J., 1986. Piezoelectric Resonators and Their Application. Elsevier, Amsterdam, Netherlands.

Zhang, Q.M., Chen, J., Wang, H., Zhan, J., Cross, L.E., Trottier, M.C., 1995. A new transverse piezoelectric mode 2±2 piezocom-

posite for underwater transducer applications. IEEE Trans. Ultrason. Ferroelect. Frequ. Cont. 42 (4), 774±780.

X. Ruan et al. / International Journal of Solids and Structures 37 (2000) 2625±2637 2637


